Standing, fidgeting, coffee all good for you; sitting is still killing you

image via Lifehacker.com

Did you know that standing instead of sitting for just three hours per workday burns the same number of calories in a year as running ten marathons? That’s 30,000 calories or about eight pounds of fat. And that’s got to be the easiest way ever to keep the belly fat and love handles at bay.

It turns out that fidgeting is good for you as well according to a recent article in Michigan Today. Scientifically termed “nonpurposeful movement,” fidgeting generates nonexercise activity thermogenesis (NEAT for short), a fancy way of saying that you burn calories when you fidget – as many as 800 per day! So go ahead and ignore your parents, your teachers, and all of those other authority figures in your life who sternly admonished you to sit quietly and stop fidgeting.

Even though researchers have been back and forth on this one for years, the evidence is mounting that coffee is good for you too. I’m fairly sure the research is about plain old coffee, not the sugar and fat-laden confectionery treats Starbucks specializes in. According to a 2005 study, Americans get more antioxidants from coffee than from anything else in their diets. Actually, dates have more antioxidants than anything but we just don’t eat that many dates.

More coffee consumption benefits: a study published in 2006 that tracked 125,000 people over 22 years showed that those who drink at least one cup of coffee a day were 20 percent less likely to develop liver cirrhosis. And according to a study from The American Chemical Society, people who drink four or more cups of coffee a day reduce their chances of developing Type 2 diabetes by 50 percent. With every additional cup, the risk gets lowered by 7 percent.

In a development of particular interest to baby boomers, researchers from the University of South Florida and the University of Miami found that people older than 65 who had higher blood levels of caffeine developed Alzheimer’s disease two to four years later than others with lower caffeine.

Finally, according to The New York Times, coffee can make you a better athlete. Caffeine increases the number of fatty acids in the bloodstream, allowing athletes’ muscles to absorb and burn those fats for fuel. The body’s small reserves of carbohydrates are saved for later on in the exercise.

Update Feb. 13, 2015: Here’s a fascinating article on an incredible number of health benefits of coffee: 51 Scientific Reasons Coffee is Healthy (#49 is Life-Changing)

So much for things that can make you healthier. One of the single biggest activities (or inactivities) that negatively affects our health is the simple act of sitting. This infographic from MedicalBillingandCoding.org details the many ways that sitting is bad for you and in fact, is killing you. A few examples:

  • Sitting for more than 6 hours per day makes you more 40% more likely to die within 15 years than someone who sits less than 3 hours per day. That holds true even if you exercise.
  • Obese people sit for 2 1/2 hours per day more than thin people. Sitting burns zero calories.  One of every three Americans is clinically obese. You see where this is leading, don’t you?
  • People with sitting jobs have twice the rate of cardiovascular disease as people with standing jobs.
  • The human body has not evolved and is not designed for long periods of sitting.

Takeaway: Get on your feet, grab some coffee, and fidget away!

Read more:

BBC News – Calorie burner: How much better is standing up than sitting?

You are about to have a moving experience! | Michigan Today.

11 Reasons Why You Should Drink Coffee Every Day.

Sitting is Killing You – MedicalBillingAndCoding.org.

Mobile Health: Red Hot Market Opportunity

http://images.businessweek.com/ss/10/08/0823_mhealth/image/01_intro.jpg
Image from Business Week

Call it mobile health, digital health, eHealth, or”Consumer Health Technology” as Forbes does. By any name the emerging market sector is expanding rapidly and attracting lots of attention, entrepreneurs, and investors.

As I’ve previously written, the time for mobile health has arrived. We carry in our pockets mobile devices with more computing power than the Apollo 11 astronauts had when they landed on the moon. The devices themselves are bristling with sensors and wireless radios. Typical smartphones have temperature sensors, accelerometers, gyros, GPS sensors, ambient light sensors, microphones, touch sensors, and high resolution still and video cameras. They can communicate via Bluetooth, NFC, WiFi, and a number of cellular communications protocols. On-board storage can hold thousands of books and dozens of movies. Connected cloud storage provides effectively infinite storage capacity.

Innovative engineers are responsible for an ongoing explosion of single and multi-purpose external, wearable sensors that communicate wirelessly with smartphones. Smartphone manufacturers are increasingly integrating fitness tracking capabilities into their devices. For example, Apple’s latest iPhone included the M7 chip that can track user activities while minimally affecting battery life.

Application developers are creating sophisticated fitness and health tracking software using the aforementioned technologies. Applications are increasingly passive rather than active, meaning the user does not need to enter data. The apps and sensors detect activities and are able to collect activity data in the background. Others are working to connect the consumer devices and sensors with electronic medical and health records “in the cloud” for a variety of purposes.

There are two main segments in mobile health, regulated and unregulated applications. In the near term, there is tremendous growth and potential in the unregulated space because it’s a quick way to get to market. The consumer markets are very large but price-sensitive.

Of course, your mobile health startup will not be alone when you get there. Big players are either already in the market or they are entering rapidly. Nike, Weight Watchers, Aetna, Garmin, Apple, Samsung, and others are already battling to be the mobile health brand of choice. There are new entrants as well. Jawbone, BodyMedia, FitLinxx, and Fitbit are relatively new companies with trendy, stylish wearable devices.

Huffington Post reported that Berg Insight said 8.3 million wearables were sold last year, up from only 3.1 million in 2011. By 2017, that number is set to reach 64 million. mobihealthnews projects 13 million fitness-related wearables will be purchased just for corporate wellness plans by 2018.

For FDA-regulated devices and applications, the initial market is smaller but the potential is just as great. Regulatory clearances and approvals provide some barriers to entry but will ultimately serve to give early market entrants a head start and not much more. These devices promise to do much more than fitness tracking. They have the potential to monitor chronic diseases and overall health, to provide alerts for significant health-related events, to collect data for clinician use, and to provide specific health-related guidance using user-specific data.

In addition to FDA scrutiny, another significant issue is compliance with HIPAA laws regarding patient privacy. With what amounts to 24×7 data collection and connectivity, there will be enormous amounts of user-specific data in devices and in cloud databases. Companies will have to address data security preemptively or risk losing user trust.

I believe the benefits to the user and to the healthcare system far outweigh the risks and costs associated with these devices and applications.

For healthy individuals, mobile health can provide real time feedback into activities, fitness levels, sleep patterns, even diet information like nutrient balance and calorie consumption.

For aging individuals or those with chronic diseases, mobile health can monitor vital signs, check disease-specific conditions, provide reminders to take medications or perform physical therapy exercises, and send updates and alerts to family members and physicians.

For physicians, mobile health can provide another way to communicate with patients and can also check compliance with recommendations and prescriptions.

For the healthcare system, mobile health can contribute to healthcare Big Data, making it easier for researchers, drug and device companies, and policy makers to track, measure, and assess the health and activities of large populations.

Takeaways: Mobile health is a once-in-a-lifetime opportunity for entrepreneurs. If you have an idea, now is the time to commercialize it. If you are a software developer, find hardware partners. Likewise, if you have developed a sensor, team up with app developers to make a complete package. If you have an unformed idea, try to shape it around mobile health. Investors have taken notice. Rock Health is soliciting applications for funding at a variety of levels.

Read more:

Thinking of Starting a Business? Check Out Consumer Health Technology | Inc.com.

13M wearables to be used in corporate wellness plans by 2018 | mobihealthnews.

How highly sensitive, wearable thermometers could change digital health | mobihealthnews.

What health startups think of Apple’s new motion tracking chip | mobihealthnews.

Moves comes to Android, not afraid of Apple’s M7 | mobihealthnews.

Healthcare Startups Can Save Lives — And Rake in Big Money | Wired Business | Wired.com.

Wireless sensors are the missing link in mobile health applications

Scanadu Scout sensorWireless sensors are an evolving missing link and a gigantic opportunity in mobile health application development and commercialization.

Markets for mobile health are developing rapidly. Personal fitness, quantified self, chronic disease monitoring, elder health monitoring, infant monitoring, acute symptom diagnosis, physical therapy, and telemedicine are a few of the segments in mobile health.

We have fast networks that cover almost all of our population in the U. S. and most developed countries. Smartphones are powerful mobile computers with vast amounts of onboard computing power and storage. If the smartphone’s capabilities are insufficient, developers can access cloud-based storage, databases, and distributed computing that can scale to address any size problem.

Because all of this technology has been developed for mass consumer markets (and because of Moore’s law), it is inexpensive – orders of magnitude less costly than a few years ago.

So we have cheap, powerful, ubiquitous computing and connectivity mostly being used for social connectivity and YouTube video watching. This powerful computer network is also increasingly being used to improve healthcare diagnosis and delivery.

Still being developed are wireless sensors to take advantage of all of that computing power. There are a number of companies pursuing commercialization of sensors and apps to enable all sorts of mobile health capabilities and functions.

Some of the sensor technologies are wearable in clothing or on the skin, some are implantable, and others are ingestible. All use low power wireless communications technology such as Bluetooth Low Energy for continuous or periodic monitoring. The first generation of sensors, like Holter monitors, recorded data for a time period and were sent to a lab for processing so a report could be generated for a physician. The new generation of sensors records continuously and sends the data in real time where a physician or even the patient can access data that has been processed by a smart application.

Physicians are beginning to be able to monitor their patients with chronic diseases in real time. Individuals active in the “quantified self” movement have more personal data than ever with which to monitor and analyze themselves. Physicians can prescribe personal diagnostics to collect data in order to make a more accurate diagnosis.

For example, Given Imaging of Israel has developed a capsule that has video recording and radio transmission capabilities. The capsule is swallowed by the patient. It then records and transmits its journey through the patient’s digestive tract. The video is reviewed by the physician to determine a preliminary diagnosis and the need for more invasive interventions like surgery.

For the Star Trek fan, Scanadu is developing a crude “tricorder”  – a disk of sensors that is placed on the forehead to measure temperature, heart and respiration rate, blood pressure, and more. The Scanadu Scout is intended for consumers, not physicians.

According to Medical Device and Diagnostics Industry, Pathfinder Software, a mobile and wireless application developer, has created a clever infographic showing various sensors and the body functions they are intended to monitor.

The sensors shown on the infographic are a mere subset of what’s currently available and in development. For example, a startup in my home city of Redmond, Washington, Heapsylon has developed sensors for “smart socks” that can measure a variety of parameters related to running gait to improve athletic performance and prevent injury.

Takeaways: There are opportunities for novel sensors to monitor and measure all sorts of body functions and parameters. There are opportunities to develop applications that gather, process and interpret sensor data for consumers and for healthcare professionals. There are opportunities to analyze aggregated sensor data to assess population health and trends. Finally, there are opportunities to develop and deploy solutions that bring low cost healthcare to underserved populations.

Read more: How Innovations Using Sensors Can Disrupt Healthcare (infographic) | MDDI Medical Device and Diagnostic Industry News Products and Suppliers.

Give Us Our Damn Lab Results!! (etc.) | The Health Care Blog

Patients are empowering themselves. We are overwhelmingly using Internet sites like WebMD and social media to research and discuss symptoms, diseases, and treatments. We are purchasing and using digital health devices and software by the millions.

Now patients are starting to demand direct delivery of lab test results instead of waiting for that call from the doctor’s office that always seems to be delayed or worse, never made.

A little-known proposed regulation issued in 2011 by the Department of Health and Human Services would allow lab test providers to send test results directly to patients. While a final regulation has not been issued, perhaps due to the current political climate in Washington, the regulation is being welcomed by patient advocates and viewed with skepticism by some physicians.

As the article states,

Increasing the ability of patients to have direct access to all their medical information allows patients to more effectively manage their own health care and organize electronic copies of their own data – a major benefit of the health care system’s ongoing transition to digital records…Most broadly, this expanded access gives patients the ability to be as engaged as they choose in their own health and care.

Some unenlightened physicians are lamenting the perceived loss of control and cite the risks involved when patients have uninformed access to clinical data. Other doctors welcome the opportunity to stay in the loop while patients take more responsibility for their own healthcare and data.

Again, from the article:

… A 2009 study published in the Archive of Internal Medicine indicated that providers failed to notify patients (or document notification) of abnormal test results more than 7 percent of the time. The National Coordinator for Health IT recently put the figure at 20 percent.  This failure rate is dangerous, as it could lead to more medical errors and missed opportunities for valuable early treatment.

How can sending lab test results directly to patients be a bad thing if the doctor still receives a copy of the results and continues the practices of alerting patients to abnormal results while offering to interpret the data?

In another empowering development, some patients are now able to skip the dreaded visit image from geekwire.comto the primary care physician, the one where they wait, wait, and wait some more while being exposed to who knows what communicable diseases in the practice’s waiting room. People in the south Puget Sound region of Washington in the Franciscan Health System service area have the ability to have a virtual visit with a physician 24 hours a day, 7 days a week for a reasonable $35 fee (not paid by insurance). The consultation may result in a referral to a physical facility or prescribing of medications. How convenient!

From the article:

“In some cases, patients just want to know if they need to go to the emergency room,” said Dr. Ben Green of Franciscan Virtual Urgent Care. “In fact, most of the time our providers are able to keep them out of the emergency room and patients are quite happy about that.”

The virtual visit with a real doctor is conducted via Skype video teleconferencing or by plain old-fashioned telephone.

The telemedicine service is actually offered by Carena, a Seattle-based company, in partnership with Franciscan. Carena started offering the service in 2010 to private companies and is now expanding to healthcare systems.

Takeaways: Empowered patients and consumers represent an enormous opportunity for medical device and digital health companies. The pharmaceutical industry proved the viability and profitability of direct-to-consumer marketing in the 1990s.

As more patients are comfortable managing their own electronic health records and in keeping their records “in the cloud,” there will be increasing demand for apps, software, and web services to facilitate and secure those transactions and records. The market niche of people who self-monitor their health, fitness, and vital signs with digital health devices and apps will steadily increase as the devices and software get more capable and easier to use.

Read more:

Give Us Our Damn Lab Results!! | The Health Care Blog.

Feeling sick? Washington health system now offers virtual doctor appointments for $35 – GeekWire.

This startup wants to help you save on medical bills by taking control of your health | GeekWire

Health 2.0“, also known as digital health – focusing on improving people’s health through a constantly evolving mix of web or mobile device apps and educational software and websites, social media, personal health records, and various forms of connected sensors – is growing and attracting much attention, from entrepreneurs, investors, the media, and public health officials.

The basic idea is that people can take charge of and improve their own health – and reduce their healthcare expenses – if they have data about what’s going on with their bodies and some basic information about what to do about it. Sometimes the data is shared with a healthcare provider.

The organization Health 2.0 estimates that there are 2540 companies in the Health 2.0 segment as of June 2013. A majority of the companies, 1465, are consumer-focused while the next largest category, professional facing, has 643 participants. There are 203 companies involved with patient-provider communications and 229 companies working on data and analytics. I’m sure the overall count increases every day.

Why is Health 2.0 such a hot segment in healthcare? For one thing, the barriers to entry are lower than in other segments like medical devices or biotech. Many of the apps are unregulated or require a 510(k) marketing clearance at most. The cost to develop and deploy an app is a fraction of what it costs to commercialize a Class II medical device.

How do these companies plan to make money? That, as the (updated) saying goes, is the $64 million question. Many of the apps and web services are free. Some use the familiar freemium model where a basic version is provided free of charge and the fully-featured version is sold for a few dollars or so. What’s lacking is a recurring revenue model, or is it?

Just as Google and other companies with large user bases do, many Health 2.0 companies aggregate and sell the data generated by their apps. It’s appropriately anonymized but it’s probably worth much more in terms of lifetime revenue per user (LRPU) than the nominal charge paid by the consumer. Plenty of researchers and marketers in Big Pharma and insurance companies as well as government would love to have large data sets with behavioral data from a target population from one of their drugs, pipeline or on the market.

The company referenced in the article, Health123, was started by ex-Microsoft and Seattle tech veterans. They plan to approach employers with the prospect of reducing their health insurance expenses by improving employee health through deployment and use of their app. It’s another revenue model. It also raises serious privacy concerns as seen in a lively discussion in the article comments.

It’s tempting to think that your company could be the one to demonstrate positive outcomes. It seems to me that there is much anticipation regarding effective health apps that can improve public health and/or “bend the cost curve” as the healthcare policy wonks like to say. Looks like there are a couple of thousand startups that are in agreement.

Takeaways: Health 2.0 presents many opportunities for medical device and healthcare IT entrepreneurs. Even hardware companies can get in on the action via development and integration of all sorts of physiologic sensors. This could turn into a “land grab” where small and nimble startups do all of the innovation and are then snapped up for outlandish valuations by big medical device and healthcare IT companies who can’t afford to miss the market opportunity.

Read more: This startup wants to help you save on medical bills by taking control of your health – GeekWire.