The Clever Bottle vs. the Smart Pill

http://www.clevercap.org/images/about_image.png
image via clevercaprx.com

Patients are terrible at taking prescription medications. A couple of startups have developed devices that aim to solve the problem, but with wildly different solutions: The Clever Bottle vs. the Smart Pill.

A recent study by WHO estimated that 50% of patients with chronic illnesses don’t take their drugs as prescribed. This behavior increases deaths and complications. Further, it costs about $100 billion per year in avoidable healthcare costs.

 

 

Medication compliance is a problem that has been around for thousands of years. In fact, a paper in The Mayo Clinic Proceedings included a quote from Hippocrates who lived and practiced medicine more than two thousand years ago:

Keep a watch…on the faults of the patients, which often make them lie about the taking of things prescribed. For through not taking disagreeable drinks, purgative or other, they sometimes die.

Hippocrates, Decorum

Ensuring that patients take their medications seems to be an unglamorous approach to a big and costly healthcare problem. It’s also a potentially lucrative market. While neither of the solutions would be considered simple or low tech by most people, they are direct in how they address the issue.

The Clever Cap pill bottle is something most of us might say, “hey, I thought of that!” The people at Compliance Meds Technologies in south Florida took the next step and developed their idea. The Clever Cap fits on standard pill bottles, dispenses only the prescribed amount of medication, keeps track of medications dispensed, and communicates wirelessly with mobile devices or with a special hub. The hub is a device made by Qualcomm in their attempt to cash in on the vast potential in mobile and digital health data.

CleverCap can also be reprogrammed and reused. The device is reported to work even without a wireless connection. It’s not clear what happens if the batteries die. What the CleverCap can’t do is know if the patient really swallowed the pills.

The Smart Pill, branded as the Ingestion Event Marker or IEM by its developer, Proteus Digital Health of Redwood City, California, aims to embed a microchip in each pill. The chip is activated and powered by stomach acid and apparently passes harmlessly through the digestive system and is eliminated. The chip communicates time and date ingested as well as physiological and behavioral patient data to a wrist patch worn by the patient.

Very high tech. Indeed, the company has partnerships with Novartis, Medtronic, St. Jude Medical, and Oracle among others. The company has raised a lot of money including $62.5 million in “the second closing of its F round.” Proteus has received FDA marketing clearance, a de novo 510(k) for its technology. It remains to be seen if drug manufacturers will need additional FDA clearance to use the technology with their pharmaceuticals.

The Smart Pill definitely knows if the patient swallowed the pills. The big question is whether patients want this much technology in their bodies vs. the less intrusive CleverCap. My guess is that there is probably room for both solutions in this potentially large emerging market.

Takeaways: There are unsolved problems and unmet needs everywhere in healthcare. We’ve all daydreamed about things like smart pills and clever caps. Keep an open mind and perhaps you will recognize a new opportunity.

Both of these technologies are potentially disruptive and they both make use of the latest information technology including cloud analytics and reporting. The CleverCap seems to have the quickest path to market but the Smart Pill has all sorts of other potential capabilities and that’s probably why the company is well-funded and flush with partners. Both strategies seem viable and there’s plenty of room in the market for their innovations and more.

Read more:

CleverCap Pill Bottle Connects to Wifi, Dispenses Only as Directed, Uploads To The Cloud | Singularity Hub.

The Pills Have Eyes: Microchipped Medicine Is Coming | Singularity Hub.

Medication Adherence: WHO Cares?.

What’s killing us and what’s holding us back

http://viz.healthmetricsandevaluation.org/gbd-compare/
Analyze the world’s health levels and trends in one interactive tool. Image via Institute for Health Metrics and Evaluation

Here are a couple of excellent online resources that delve into the details of what’s literally killing people around the world and how various countries, including the USA, are ranked for health, government, education, and business related factors in the global economy. The resources are windows into what’s killing us and what’s holding us back as people and as societies.

If you’re a startup CEO or product manager for a new medical device-based therapy or diagnostic, these resources will come in handy as you write and execute your business plan. If you are in public health or global health, the tools are great ways to visualize diseases, risk factors, causes of death and disability and much more. If you’re neither, they are still interesting and fun places to get informed and marvel at the incredible diversity in the world.

The first resource was created by Seattle’s own Institute for Health Metrics and Evaluation at the Univer­sity of Washington. The tool is called the Global Burden of Disease, or GBD Compare. It is a web-based interactive graphic based on a huge database of health statistics from all over the world.  You can use the visualization tool to see the incidence and impact of all sorts of illnesses and conditions.

For example, you can examine a vast number of causes of causes of disease or injury by country or region every five years from 1990 to 2010. You can also slice the data by sex and age bracket. As you make your selections, the graphics change in real time. It’s mesmerizing.

The second resource is a report from the World Economic Forum titled the Human Capital Report 2013. From the report’s preface:

Through the Human Capital Report, the World Economic Forum seeks to provide a holistic, long term  overview on how well countries are leveraging their human capital and establishing workforces that are prepared for the demands of competitive economies. By providing a comprehensive framework for benchmarking
human capital, the Report highlights countries that are role models in investing in the health, education and talent of their people and providing an environment where these investments translate into productivity for the economy. In addition, through extensive additional information on the 122 countries covered, the Report
seeks to provide a fuller picture of the context within which human capital is operating in any particular country.

The Human Capital report provides benchmark assessments on a number of items for 122 countries around the world in four broad categories: Health and Wellness, Education, Workforce and Employment, and Enabling Environment.

While the U.S. ranks a respectable 16 out of 122 overall on the Human Capital Index, there are areas of concern and opportunities for improvement. For example, in the Education category, our rank in math and science education was only 44 out of 122 but on the positive side, the U.S. was number 1 in education gender gap.

In the Health and Wellness category, we ranked 106/122 in stress and 112 in obesity rate but we ranked number 3 in % of children under age 5 with stunting or wasting. In fact, the U.S. ranked 43 overall in Health and wellness, not impressive for a country that spends more on healthcare as a percentage of GDP than any country on the planet.

In Workforce and Employment, the U. S. ranked 76/112 in unemployment rate and only 49/112 in labor force participation rate for ages 15-64 but were number 5 in both capacity to attract talent and capacity for innovation.

Finally in the Enabling Environment category, the U.S. ranked low, number 88, in mobile internet use (surprising!) but high, number 3, in business and university R&D collaboration as well as number 3 in something called the Doing Business Index.

Takeaways: There are growing numbers of online resources that can be used to bolster a business plan or presentation. There is an incredible array of data being generated on a continuous basis. The researchers that compile, analyze, and present this data are doing all of us a great favor as we have tools to pinpoint clinical conditions and compare our society with others around the world.

Read more:

Want to Save Lives? You Need a Map of What’s Doing Us In – Wired Science.

GBD Compare.

America, we’re not fat, loud and lazy. We’re fat, diseased and stressed.

The Human Capital Report 2013 – The World Economic Forum.

Ranking the best places for healthcare startups

http://www.cbinsights.com/blog/wp-content/uploads/2013/12/1Top50ExitsNew.png
image via CBinsights.com

Silicon Valley is Mecca for technology companies. When it comes to ranking the best places for healthcare startups, however, the global technology hub seems to be not as dominant.

A common method for ranking the best places for startups is to quantify the number of exits and aggregate valuation in a given time period. A recent report by CB Insights, an investor service focused on early stage companies and emerging industries, says that Massachusetts and not the Bay Area has been more successful in exits for VC-backed healthcare startups.

Healthcare startup categories included medical device, biotech, and pharmaceutical companies.

The analysis also shows that other regions are competitive as well. Southern California had the next highest number of exits in the same time period, 2012-present.

http://www.cbinsights.com/blog/wp-content/uploads/2013/12/5ValueCreationTableNewFinal.png

The CBinsights report looked at the startup exit data in another way that highlights differences between the regions more clearly. They defined another metric, “Value Creation”. Value Creation is the ratio of the average exit value of a company in the region to the average VC investment in a company in that region. So bigger is better.

As seen in the table, New York comes out on top in this ranking while Silicon Valley lags at little more than half of the New York number. My home state of Washington is even lower on the list. This ranking may reveal why certain regions seem to have an easier time attracting venture capital investment than others. One last and very interesting note: the Value Creation metrics for technology companies are much higher than for healthcare companies. It starts to become clear why there is a dearth of capital investment in the healthcare space. If you are a VC, would you put your money in healthcare or technology?

Takeaways: Although no single city or region in the U.S. dominates when it comes to a great location for healthcare startups, there are a few conclusions that can be drawn from the report.

The East Coast  – Massachusetts in particular but also the New York/New Jersey/Pennsylvania tri-state areas are very strong in healthcare startups. Obvious reasons include major population centers for access to a talented and experienced employee pool, large numbers of world-class research universities and medical centers, and close proximity to financial hubs.

Of course, other locations such as Minneapolis, the San Francisco Bay Area (including Silicon Valley), Southern California, and the Seattle Metro area have their drawing power as well. Some of the additional factors include lifestyle, proximity to the FDA and other government officials, and being part of an industry “cluster” (medical device in Minneapolis, biotech in the Bay Area for example).

Read more:

Silicon Valley doesn’t dominate when it comes to VC-backed healthcare exits.

Silicon Valley is Second to Massachusetts for Venture Capital-backed Healthcare Exits.

Jumper Cables for Your Brain

http://graphics8.nytimes.com/images/2013/11/03/magazine/03brain1/mag-03brain-t_CA0-articleLarge.jpgA novel therapy that improves mental performance in healthy people is being called “jumper cables for your brain.” The scientific name for the therapy is transcranial direct-current stimulation, tDCS for short.

A similar yet very different treatment, electroconvulsive therapy (ECT), formerly called electroshock therapy, doesn’t have a positive image in most peoples’ minds. Popular culture including movies and TV has convinced most of us that it’s used to treat crazy people, usually with extremely undesirable outcomes, and that the people giving the treatment are either mad scientists or evil government agents.

ECT does have a place in modern neuroscience, however. It is often the last resort therapy for patients with intractable depression and other conditions that do not respond to drug treatments.

tDCS uses very low voltage and very little current to achieve its effect, less than 1% of the enegy used in ECT. The tDCS devices being studied today use a 9 volt battery for power. tDCS researchers have been using currents in the range of 300 to 500 microamps. In contrast, ECT uses much more current, about 2000 times as much. According to an article in Wikipedia, “Typically, the electrical stimulus used in ECT is about 800 milliamps…”

 Researchers have identified a myriad of benefits for the novel therapy. From the article in The New York Times:

Scientific papers published in leading peer-reviewed journals since 2005 have shown that tDCS can improve the speed or accuracy with which people perform [a computerized] attention-switching task. Other studies have found it can improve everything from working memory to long-term memory, math calculations, reading ability, solving difficult problems, piano playing, complex verbal thought, planning, visual memory, the ability to categorize, the capacity for insight, post-stroke paralysis and aphasia, chronic pain and even depression. Effects have been shown to last for weeks or months.

“tDCS will not make you superhuman, but it may allow you to work at your maximum capacity,” said Felipe Fregni, the Brazilian physician and neurophysiologist who runs Harvard’s Laboratory of Neuromodulation at the Spaulding Rehabilitation Hospital. “It helps you achieve your personal best level of functioning. Let’s say you didn’t sleep well the night before. Or perhaps you’re depressed, or you suffered a stroke. It helps your brain reach its peak performance.”

No one is really sure why the therapy works although there are theories. The brain is essentially a very complex electrochemical computer. Applying a weak electrical field to neurons while performing a task seems to make the neurons fire easier and to remember the task for some time. Unfortunately, researchers have not yet identified the specific mechanism that is responsible for the improvements. As a result, research funding has been sparse because peer reviewers for funding agencies in the U.S. government remain skeptical.

A number of companies are pursuing commercialization of tDCS technology and are engaged with the U.S. FDA on the regulatory approval process. ECT devices are categorized as Class III or pre-market approval (PMA). It remains to be seen if the new, lower power devices also fall into the PMA category. A less restrictive FDA classification would mean a greater market potential and benefits to ordinary healthy people who are looking for a little mental advantage. I would definitely consider trying one of these devices in exchange for a few of those mental benefits!

Takeaways: There are many processes and body functions that are not fully understood or characterized. When researchers continue to investigate these promising areas despite a lack of funding, it might mean that there is an opportunity for collaboration and eventual commercialization.

Of course, something like tDCS, “brain enhancement technology” comes with risks. What might be the long term effect of the therapy on the brain? What about effects on children and adolescents?

Finally, it will be imperative to separate the new technology from the stigma of electroconvulsive therapy in order to appeal to healthy consumers.

Read more:

Jumper Cables for the Mind | New York Times Magazine

GLNT gets another patent to treat Parkinson’s for transcranial direct current stimulation during sleep.

Renal Denervation – the next big thing?

blood pressure checkIt seems like every big medical device company is working on a technology for renal denervation to treat high blood pressure.

Development and market availability of a therapy for hypertension (high blood pressure) is a big deal. Here are some facts about hypertension from the World Heart Federation:

  • Globally, nearly one billion people have high blood pressure (hypertension); of these, two-thirds are in developing countries.
  • Hypertension is one of the most important causes of premature death worldwide and the problem is growing; in 2025, an estimated 1.56 billion adults will be living with hypertension.
  • Hypertension is the leading cause of cardiovascular disease worldwide.
  • People with hypertension are more likely to develop complications of diabetes.

Some additional facts about hypertension in the USA from the Centers for Disease Control:

  • 67 million American adults (31%) have high blood pressure—that’s 1 in every 3 American adults.
  • 69% of people who have a first heart attack, 77% of people who have a first stroke, and 74% of people with chronic heart failure have high blood pressure. High blood pressure is also a major risk factor for kidney disease.
  • More than 348,000 American deaths in 2009 included high blood pressure as a primary or contributing cause.
  • High blood pressure costs the nation $47.5 billion annually in direct medical expenses and$3.5 billion each year in lost productivity.
  • About half (47%) of people with high blood pressure have their condition under control.

Hypertension is treated currently with drugs of course. According to a report from ADS Reports, the global market for antihypertensive drugs was $29.9 billion in 2010 and is projected to reach $33 billion in 2017. That’s a huge target for interventional therapy.

I wrote about Bellevue, WA-based Kona Medical a couple of weeks ago receiving a $10 million investment specifically earmarked for their market entry into China, obviously one of the biggest potential markets.

Kona recently announced interim results from two ongoing clinical trials. It reported an average systolic blood pressure reduction of 29 mmHg at 6 months in their first study and a three-month drop of 19.4 mmHg in the second study using a dosing pattern that reduced therapy time from 13 to three minutes.

Kona’s results are significant because its therapy is completely noninvasive. It uses high intensity focused ultrasound on the surface of the skin to deliver energy to ablate the renal nerves.

Other companies developing renal denervation technologies include St. Jude Medical, Boston Scientific, and Medtronic. Each has chosen a different energy modality to deliver the therapy.

MedCityNews reports that St. Jude is using a multi-electrode catheter to deliver electrical energy to the renal nerve sites. The company reported results from a clinical study: at 18 months, 77 percent of the 46 patients treated with St. Jude’s technology, the EnligHTN system, had responded to therapy. St. Jude’s system total ablation time is about four minutes, according to a company statement.

The Boston Scientific therapy uses bipolar (electrical) energy to deliver therapy. After 12 months, the company reported a “clinically-meaningful decrease in office systolic blood pressure” in 85 percent of the 139 patients treated. The Boston Scientific therapy requires a brief 30-second treatment time.

Medtronic seems to have a head start in the market. In early 2011, it finalized its purchase of Ardian, a Silicon Valley startup that was working on a novel therapy for hypertension since 2003. The Medtronic RDN system therapy uses radio frequency energy delivered via a catheter to the renal arteries/nerves. Medtronic’s Symplicity renal denervation system has a CE mark and is commercially available outside the U.S. Medtronic has a number of completed and ongoing clinical studies, all of which have resulted in conclusions that the therapy is safe and effective.

Takeaways: New markets are one area where startups can compete on a level playing field with huge, multinational companies. They can be more nimble, take more risks, and can pivot when things don’t go according to plan. In the case of renal denervation, Kona seems to have a decided advantage with its noninvasive technology and treatment. Of course, Medtronic has a years-long head start and we all know the “best” technology doesn’t always prevail, right?

Read more:

Two top medical device companies announce promising renal denervation tech results – MedCity News.

Kona notches solid results for novel renal denervation tech – FierceMedicalDevices.

 

 

How many calories were in that cheeseburger?

CheeseburgerA Canadian startup has developed technology that may disrupt the mobile health tracking market. Airo Health is commercializing a nutrition tracker that can passively detect and inform the wearer exactly how many calories were consumed in the user’s last meal.

The nutrition tracker uses a light emitter and detector in a wristband and fairly sophisticated software in a smartphone app to measure metabolites in the bloodstream. The metabolites are released during and after the user’s meal.

The Airo device also detects the user’s heartbeat and uses that information to assess activity and fitness levels. All of this analysis starts with sensors in a small, unobtrusive wristband.

According to the company co-founder, Abhilash Jayakumar, Airo received US$81,400 in seed funding from the Canadian federal government and the University of Waterloo. The company says it is planning a commercial launch in the fall of 2014 – that’s just a year or so away. Airo has not yet built production prototypes, so their launch date is most likely optimistic.

In an interview with MobiHealthNews, Jayakumar said the sensor bracelet is detecting accurate calorie intakes about 80% of the time. That’s an exciting development, but the lead times for consumer electronics make a full commercial launch in a year improbable at best.

The fledgling startup has done impressive work with very little funding. They are taking digital health and the “quantified self” movement to a new level. Competitors are no doubt already starting development of their own passive calorie tracking technology. What would really be disruptive is an app to make you not eat that cheeseburger in the first place!

Takeaways: Mobile health sensors and applications are getting progressively more sophisticated. It remains to be seen if there is a sizeable market for these devices and apps but they are capable of measuring things in real time that were previously available only in a doctor’s office by appointment. The commercial availability of a Star Trek-like Tricorder device may be only a few years away.

Most of the personal fitness devices are targeted at healthy people. There is a large opportunity as well in monitoring people with chronic diseases or those recovering from surgery.

Read more:

AIRO ups the ante with passive nutrition tracking

 

MedTech Startup Red Flags to Watch Out For and to Guard Against

Red flagIn an amusing series of articles and blog posts last week, biotech veterans and observers traded their favorite red flags that investors must watch for when considering biotech investment.

Most of these caveats also apply to medical device companies. On the flip side, startup CEOs should be forewarned and forearmed to not make the same mistakes when pitching and/or structuring their companies. They are on to you…

Here are a few of my favorite caveats:

[from Luke Timmerman at Xconomy]
  • Watch out for weak science or results that can’t be reproduced by third party researchers.
  • The company story is too complicated and can’t be reduced to an elevator pitch.
  • “There is no competition.”
  • No plan to demonstrate outcomes or show clinical and financial benefits to the healthcare system.
  • “Rent-a-luminaries” make up the Medical/Clinical/Scientific Advisory Boards.
[from David Sable, physician and venture capitalist]
  • CEO is clueless around investors
  • CEO is inflexible and won’t deviate from the rehearsed pitch
[from Christopher Henney, co-founder of Immunex, Icos, and Dendreon]
  • Too many VCs on the board
  • Family members in key management or board positions

I’m sure these three veterans have seen and/or interviewed dozens, if not hundreds of startup CEOs and their pitches.

Takeaways: Simple is best. Use a template to develop your pitch – they are easily found. Don’t deviate (at least not too much) from standard practices for startups in your industry segment and in your geographic area. It’s easier than ever to get a negative reputation. You may be able to get past one round with a sketchy pitch or objectionable governance. The stakes keep going up, however, and you risk everything by not being able to secure financing all the way to market launch. Do yourself and all of your stakeholders a huge favor and address the red flags before the investors see them.

Read more:

21 Red Flags to Watch for in a Biotech Company | Xconomy.

Six Red Flags to Watch Out For in a Biotech, From Dendreon Co-Founder Chris Henney | Xconomy.

A few more biotech red flags (h/t @ldtimmerman) – David Sable .